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ABSTRACT

In this paper we propose a novel method to recover the 3D

shape of the knee and of the prosthesis for the patients that

have undergone total knee replacement surgery. We address

this using a set of 2D X-Ray images of the knee taken from

different viewpoints around it. The problem is then casted to a

multiview stereo reconstruction problem and we consider an

energy-minimization approach to recover the bone structure.

This function is designed to recover a 3D surface which mini-

mizes image and shape-based terms. The cost related to data

is defined through the projections of the 3D surface onto 2D

image planes while the prior-knowledge is introduced using

a 3D model of the knee. The use of Markov Random Fileds

as well as recent advances in discrete optimization and in par-

ticular the state-of-the-art Fast PD optimization algorithm is

considered towards optimal reconstruction. Promising results

demonstrate the potentials of our method.

Index Terms— X-ray imaging, multi-view stereo recons-

truction, surface evolution, discreet optimization, metric labe-

ling problem

1. INTRODUCTION

For patients who have undergone total knee replacement

surgery, both static and dynamic post-operator observations

of the knee are of strong interest. In our work we aim to re-

construct the 3D model of the knee (both bone and prosthe-

tics) of a patient from a set of 2D X-ray images. We address

this using a 3D multi-view reconstruction approach. The goal

is to find the 3D surface which respects the following cri-

teria : image projection consistency : its projection onto the

image planes should segment both bone and prosthetics from

the background and anatomical constraint : it must be a valid

3D representation of the shape of the knee joint.

The multi-view stereo reconstruction of the knee from

X-ray images has already been addressed in [1]. In such a

context one has to address a number of challenges like the pre-

sence of occlusions, the non-homogeneity of the bone areas,

the lack of texture on the prosthetics areas and the additio-

nal noise on the background. All these make impossible the

use of classical 3D mutiview segmentation techniques such

as visual hull, voxel coloring, space carving or other classical

variational techniques. A variational technique based on Geo-

desic Active Regions has been proposed in [1], but while ha-

ving good results in the case of prosthetics, when trying also

to segment the bone the complexity of the algorithm grows

and the results are not the expected ones. Furthermore, the

method was quite sensitive to the initial conditions. We tried

to overcome this by using prior knowledge on the anatomical

shape of the knee.

We model the problem at hand as the minimization of a

discrete energy defined in the Metric Labeling Problem fra-

mework (ML problem for short). It contains a term related

to the image data (models the image projection consistency

constraint), as well as a term related to prior knowledge on the

structure of the knee joint (models the anatomical constraint).

The state-of-the-art minimization algorithm Fast PD [2] is

then used for optimizing the objective function and finding

the solution.

This article is organized in 4 sections. Section 2 intro-

duces the metric labeling problem. Section 3 presents our

solution and gives some results while section 4 provides the

conclusions.

2. METRIC LABELING FRAMEWORK

The ML problem was first introduced in [3]. Given a set

of objects P, a set of labels L and a weighted graph G =
(P,E,w) defining the relations between the objects, the pro-

blem consists in finding a labeling function f : P → L that

minimizes the energy E(f) (equation 1). The value for as-

signing a label fp to an object p is given by cp(fp) and ex-

presses the likelihood of associating the label fp to p. For

each edge (p, q) ∈ E, we associate a separation cost defined

by wpq · d(fp, fq) reflecting the strength of the relationship

between the objects p and q (given by wpq) and the simila-

rity between the labels fp and fq (measured by d, which was

a distance function in the initial formulation). The intuition

behind this cost definition is that one should associate similar

labels to strongly related objects.

E(f) =
∑
p∈P

cp(fp) +
∑

(p,q)∈E

wpqd(fp, fq) (1)

In [2] the metric condition of the d function was relaxed.

In fact, for each edge (p, q) ∈ E a different function dpq
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can be specified, leading to formulation 2 of the energy. In

addition, this function dpq must only respect the property :

∀a, b ∈ L dpq(a, b) ≥ 0 and dpq(a, b) = 0 ⇒ a = b. (In

the following sections we shall extend the notion of Metric

Labeling problem to this case.)

E(f) =
∑
p∈P

cp(fp) +
∑

(p,q)∈E

dpq(fp, fq) (2)

Due to the large spectrum of applications which could be mo-

deled using the Metric Labeling approach, over the past de-

cades it has gained significant research attention. However

being a NP-hard problem [4], all known algorithms are ap-

proximative. To this end a new framework for the optimiza-

tion of such an energy, called the Fast PD (Fast Primal-Dual),
has been introduced [2]. The framework redefines the ML

problem as an Integer Programming problem, uses its Linear
Programming relaxation and takes advantage of the primal-

dual properties. It searches for the solution by iteratively ge-

nerating pairs (xi, yi) of solutions for the primal and dual pro-

blems ; xk is the solution of the optimization process if it is a

f -approximation of the optimum solution of the primal inte-

gral problem (the pair (xk, yk) satisfies the Primal Dual Prin-
ciple [2]). The Fast PD algorithm provides both good theore-

tical guarantees and good practical results.

3. MULTI-VIEW STEREO FROM X-RAYS

We present in this chapter an approach for reconstruc-

ting both knee bones and prosthetics for a patient that has

undergone total knee replacement surgery from a set of X-

ray images. It consists in deforming a 3D surface towards the

optimal solution. This can happen using variational formu-

lations [5, 1]. However these methods are sensitive to initial

conditions. In order to overcome this limitation we will pro-

ceed with a discrete model – we model our problem as a ML

problem having as objects a set of control points defining the

3D surface and associating labels to all possible 3D trans-

formations. The basic assumption of our approach is that by

deforming the control points in the 3D space, one can reco-

ver a solution which satisfies the anatomical constraint while

being supported from the data. Such a solution is optimal if

the space of deformations is infinite. However, solving labe-

ling problems with infinite number of labels is known to be

intractable. We overcome this by using an incremental defor-

mation approach. The same deformations will be considered

for all control points. During each iteration we will then seek

the optimal solution to the ML problem among these defor-

mations on top of the existing deformation. This corresponds

to finding the labeling that minimizes an energy containing

both data and shape-prior based costs. Upon convergence, the

output of the algorithm is a 3D surface which is sustained by

the input image data and respects the anatomical constraints.

3.1. Input

The input X-ray images are taken from a priori known

viewpoints around the knee, so we consider that all projec-

tions to the images planes are known (no need for calibra-

tion). Let I = {I1, I2, ..., IN} be the set of X-ray images,

Ω = {Ω1, Ω2, ...,ΩN} the corresponding 2D domains and

Π = {π1, π2, ..., πN} the set of projections such that any pro-

jection πi : R3 → Ωi transforms a 3D point (x, y, z) ∈ R3

to the corresponding pixel (ui, vi) ∈ Ωi.

We have used a discrete reprezentation of the surface as a

3D triangulated mesh defined by a set of control points (the

adjacence of control points does not change during the opti-

mization phase). The advantage of this reprezentation is that

each control point has only a local influence on the shape of

the surface. Let P = {P1, P2, ..., Pn} be the set of control

points and S = S(P) = S(P1, P2, ..., Pn) the 3D surface

they define.

We achieve the deformation of the 3D surface simply by

applying different 3D transformations to each of its control

points. To be consistent with the ML problem formulation,

we express all these transformations in terms of labels. For

a given label w, we can imagine a function fw that applies a

3D transformation to the coordinates of a control point P (no-

tation fw(P )). As there is no difference between the control

points, we have decided to restrict our 3D deformations to

translations. We also add to the label set the label 0 corres-

ponding to the identity transformation : ∀P ∈ P, f0(P ) = P .

Note that the number of labels has to be as small as possible

in order to have a fast optimization round and as large as pos-

sible in order to search in a bigger neighborhood.

Let L be the set of labels and w = (w1, w2, ..., wn) ∈ Ln

a vector of n labels (also called a labeling). We denote by fw

the function that applies the transformation fwi
to the control

point Pi : fw(P) = {fw1(P1), fw2(P2), ..., fwn
(Pn)}.

3.2. Energy

The goal of the algorithm is to find the vector of labels

that deforms the initial surface to a surface that respects both

image projection consistency and anatomical constraints (see

section 1). This can be easily modeled as the minimization of

a discrete energy (cost function) containing two terms : a data
cost that punishes the surfaces that are non consistent with

the input X-ray images and a shape prior based cost which

punishes the surfaces that are not “smooth” and that are not

valid with respect to the anatomical shape of the knee :

wo = arg minw∈L(α · Edata + β · Eprior) (3)

To define the data term it is important to notice that each

visible control point, which projects to the interior of the ob-

ject in an image plane, is expected to have coherent regional

statistics. On the other hand, each boundary point is expec-

ted to have regional discontinuities (1Γi
(u, v) = 1, if the
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pixel (u, v) is on the contour of the projected 2D surface

πi(S(fw(P))), 0 otherwise).

Edata(w) =
∑

πi∈Π

⎧⎨
⎩

n∑
j=1

hi(πi(fwj
(Pj)))

⎫⎬
⎭ (4)

hi(u, v) = 1Γi(u, v) · gi(u, v)
+(1 − 1Γi(u, v)) · γ · ri(u, v)

In image locations where the boundaries between bone or

prosthesis and background exist, one would expect that the

distribution of pixel intensities will inherit at least two popu-

lations and therefore the entropy is expected to be high (let

H be the entropy). Also, the pixels on the boundaries bet-

ween bone / prosthetics and the background should have high

values for the regional cost, while the pixels that are inside

should have low values for the same cost (we denote by Wuv

an image window centered in (u, v)).

gi(u, v) = HWuv
(u, v) − ζ · ri(I(u,v)) (5)

HWuv
(u, v) =

∑
(p,q)∈Wuv

Pr[I(pq)] · log(Pr[I(pq)])

For each pixel (u, v) in an image, let Probj [I(u, v)] be

the likelihood that the pixel belongs to the object of interest

and Prback[I(u, v)] that it belongs to the background. The

regional cost is smaller in image locations inside the object of

interest than on the background (equation 6).

ri(u, v) =
∑

(p,q)∈W(u,v)

− log
(

1 +
Probj [I(p, q)]
Prback[I(p, q)]

)
(6)

To express the shape prior based cost, we begin by defi-

ning a graph G = (V,E), having the control points as nodes

(V = P) and pairs of control points as edges(not only the

pairs of adjacent control points on the 3D mesh). Based on

some training examples, for each edge (Pi, Pj) ∈ E and a po-

sitive real value x, we can compute the likelihood that x is the

distance between Pi and Pj ; we note this probability Prij [x].
Therefore, assuming that either anatomical knowledge is used

or actual CT data, we can learn the relative conditional distri-

butions of the position of a control point given the positions

of the other control points. The shape prior-based cost is defi-

ned such that it penalizes the surfaces having high improbable

distances between the control points.

Eprior(w) =
∑

(Pi,Pj)∈E

− log(Prij [||fwi(Pi) − fwj (Pj)||]

(7)

Equations 3, 4 and 7 lead to the expression 8 of the energy

(a typical case of ML energy).

E(w) =
∑

Pj∈P

α
∑

πi∈Π

hi(πi(fwj
(Pj)))

+
∑

(Pi,Pj)∈E

−β log
(
Prij

[||fwi(Pi) − fwj (Pj)||
])

(8)

(a) Initial surface (b) After 4 iterations (c) Solution surface

Fig. 1. Surface deformation in case of using only shape-prior based

cost. The initial surface is an arbitrary 3D triangular mesh. The so-

lution surface (after 9 iterations) is the actual 3D prior model of the

knee bone and prosthetics.

We deform the initial surface towards the optimal one

using an iterative process. We begin with the initial set of

control points P0 = P and the associated surface S0 =
S(P0). We minimize the energy defined by the equation 8

for the control points P0 and find the labeling w1 ∈ Ln.

Then, the control points suffer the 3D transformation defined

by the labels w1 and the result is a new set of control points

P1 = fw1(P0) that generates a new surface S1 = S(P1).
The procedure is repeated until convergence – at the final

step, we obtain the trivial labeling (wt = (0, 0, ..., 0)) as the

result of the optimization algorithm. Even though no theoreti-

cal guarantees of convergence are provided, the tests revealed

that the solution was found after a small number of iterations.

3.3. Implementation and Results

The boundary-based cost (5) and the region cost (6) de-

pend only on the X-ray images (do not depend on the current

surface S(fw(P))) and their values over each image domain

can be pre-computed. Thus, in order to obtain the data cost

for P and w, one only needs to project the 3D point fw(P )
to all image domains. We have worked with a surface defined

by 500 control points and a set of 130 labels. Even though

the time needed for projecting all points to all image domains

is important (we have used OpenGL for speeding up the pro-

jection process), the overall computational time is not very

large due to the fact that the number of iterations needed for

convergence is quite small (only 8 in the example below).

Having access to a small number of data sets, we compu-

ted the shape-based prior cost using an artificial model of the

knee joint. To obtain this model we have relied on the visual

hull obtained from a set of input images roughly segmented

by hand. This leads to a 3D surface that can be considered as

a rough model of the knee joint.

We have first tested our method setting α = 0 in equation

8 (only the shape prior based term) and providing as input

an arbitrary 3D mesh. The behavior of our algorithm in this

case is the one expected, the initial surface suffers a series of

3D transformations and converges rapidly to the prior model

(figure 1).
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Let’s now move to the real problem. We acquire the X-ray

images by placing the subject such that his knee is parallel

with the Z axis and by rotating the view angle around the

knee with 10.885 degrees. The 3D transformations associated

to the labels are modified from one iteration to another – this

allows a rougher search in the beginning and a finer one at the

end (notice however that the label set does not need to change

during the iterations).

We begin the algorithm having the shape prior model as

the initial surface and an arbitrary initial position. The first

steps are done by imposing a high regional and shape prior-

based costs (high values for β and γ) while searching in a

large neighborhood of the current position (figure 2).

(a) Initial surface (b) After one iteration (c) After 3 iterations

Fig. 2. Surface deformation in case of using strong regional and

shape prior based costs. Projections to image with viewangle of

97.965 degrees. The 3D surface suffers translations approaching to

the correct pose of the knee. The algorithm converges rapidly.

We give then greater importance to the data term with res-

pect to the shape prior term (high values for α) and we begin a

finer search in a smaller neighborhood of the current solution

(figures 3 and 4).

(a) After 4 iterations (b) After 6 iterations (c) Solution surface

Fig. 3. Surface deformation using strong data cost. Projections to

image with viewangle of 97.965 degrees. The final surface projects

correcly to the image data.

Even though the solutions are not ideal, it is important to

make some observations. First, the surface deforms such that

its image projections are consistent with the image data This

validates our data cost formulation. Second, even though the

final surface is not smooth enough, one can easily observe that

it respects the anatomical geometry of the knee. This shows

that our choice of shape prior-based cost is fundamentally cor-

rect though it leaves room for further improvement.

(a) (b)

Fig. 4. Final 3D surface. The surface is not as smooth as expected.

4. CONCLUSIONS

In this paper we have addressed the problem of recons-

tructing of the 3D shape of the knee from a set of X-ray

images. Our solution consists in deforming a 3D surface, until

its projections to the image planes provide a good separation

of the bone and prosthetics from the background in the input

X-ray images and such that it is a valid anatomical represen-

tation of a human knee. The problem is modeled as a ML

problem associating labels to all possible 3D transformations

and integrating both data and shape prior-based costs into the

energy. The process of searching for the best surface is itera-

tive, at each iteration seeking the optimal solution among the

current deformations on top of the existing deformation. The

state-of-the-art optimization algorithm Fast PD is used during

each optimization round.

The main contribution of our work consists in providing a

discrete model for solving the multiview stereo reconstruction

problem while making use of a shape prior. Our results show

that the concept of prior knowledge improves the reconstruc-

tion as opposed to variational approaches .
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